Visual Information Matters for ASR Error Correction

16 Mar 2023  ·  Vanya Bannihatti Kumar, Shanbo Cheng, Ningxin Peng, Yuchen Zhang ·

Aiming to improve the Automatic Speech Recognition (ASR) outputs with a post-processing step, ASR error correction (EC) techniques have been widely developed due to their efficiency in using parallel text data. Previous works mainly focus on using text or/ and speech data, which hinders the performance gain when not only text and speech information, but other modalities, such as visual information are critical for EC. The challenges are mainly two folds: one is that previous work fails to emphasize visual information, thus rare exploration has been studied. The other is that the community lacks a high-quality benchmark where visual information matters for the EC models. Therefore, this paper provides 1) simple yet effective methods, namely gated fusion and image captions as prompts to incorporate visual information to help EC; 2) large-scale benchmark datasets, namely Visual-ASR-EC, where each item in the training data consists of visual, speech, and text information, and the test data are carefully selected by human annotators to ensure that even humans could make mistakes when visual information is missing. Experimental results show that using captions as prompts could effectively use the visual information and surpass state-of-the-art methods by upto 1.2% in Word Error Rate(WER), which also indicates that visual information is critical in our proposed Visual-ASR-EC dataset

PDF Abstract


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.