Visual Question Answering as a Meta Learning Task

ECCV 2018 Damien TeneyAnton van den Hengel

The predominant approach to Visual Question Answering (VQA) demands that the model represents within its weights all of the information required to answer any question about any image. Learning this information from any real training set seems unlikely, and representing it in a reasonable number of weights doubly so... (read more)

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet