Visual Referring Expression Recognition: What Do Systems Actually Learn?

We present an empirical analysis of the state-of-the-art systems for referring expression recognition -- the task of identifying the object in an image referred to by a natural language expression -- with the goal of gaining insight into how these systems reason about language and vision. Surprisingly, we find strong evidence that even sophisticated and linguistically-motivated models for this task may ignore the linguistic structure, instead relying on shallow correlations introduced by unintended biases in the data selection and annotation process... (read more)

PDF Abstract NAACL 2018 PDF NAACL 2018 Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet