Visual Sequence Learning in Hierarchical Prediction Networks and Primate Visual Cortex

NeurIPS 2019 Jielin QiuGe HuangTai Sing Lee

In this paper we developed a computational hierarchical network model to understand the spatiotemporal sequence learning effects observed in the primate visual cortex. The model is a hierarchical recurrent neural model that learns to predict video sequences using the incoming video signals as teaching signals... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper