Visual Stability Prediction and Its Application to Manipulation

15 Sep 2016  ·  Wenbin Li, Aleš Leonardis, Mario Fritz ·

Understanding physical phenomena is a key competence that enables humans and animals to act and interact under uncertain perception in previously unseen environments containing novel objects and their configurations. Developmental psychology has shown that such skills are acquired by infants from observations at a very early stage. In this paper, we contrast a more traditional approach of taking a model-based route with explicit 3D representations and physical simulation by an {\em end-to-end} approach that directly predicts stability from appearance. We ask the question if and to what extent and quality such a skill can directly be acquired in a data-driven way---bypassing the need for an explicit simulation at run-time. We present a learning-based approach based on simulated data that predicts stability of towers comprised of wooden blocks under different conditions and quantities related to the potential fall of the towers. We first evaluate the approach on synthetic data and compared the results to human judgments on the same stimuli. Further, we extend this approach to reason about future states of such towers that in turn enables successful stacking.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here