Visual Tracking via Boolean Map Representations

30 Oct 2016  ·  Kaihua Zhang, Qingshan Liu, Ming-Hsuan Yang ·

In this paper, we present a simple yet effective Boolean map based representation that exploits connectivity cues for visual tracking. We describe a target object with histogram of oriented gradients and raw color features, of which each one is characterized by a set of Boolean maps generated by uniformly thresholding their values. The Boolean maps effectively encode multi-scale connectivity cues of the target with different granularities. The fine-grained Boolean maps capture spatially structural details that are effective for precise target localization while the coarse-grained ones encode global shape information that are robust to large target appearance variations. Finally, all the Boolean maps form together a robust representation that can be approximated by an explicit feature map of the intersection kernel, which is fed into a logistic regression classifier with online update, and the target location is estimated within a particle filter framework. The proposed representation scheme is computationally efficient and facilitates achieving favorable performance in terms of accuracy and robustness against the state-of-the-art tracking methods on a large benchmark dataset of 50 image sequences.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here