Vocabulary-based Method for Quantifying Controversy in Social Media

14 Jan 2020  ·  Juan Manuel Ortiz de Zarate, Esteban Feuerstein ·

Identifying controversial topics is not only interesting from a social point of view, it also enables the application of methods to avoid the information segregation, creating better discussion contexts and reaching agreements in the best cases. In this paper we develop a systematic method for controversy detection based primarily on the jargon used by the communities in social media... Our method dispenses with the use of domain-specific knowledge, is language-agnostic, efficient and easy to apply. We perform an extensive set of experiments across many languages, regions and contexts, taking controversial and non-controversial topics. We find that our vocabulary-based measure performs better than state of the art measures that are based only on the community graph structure. Moreover, we shows that it is possible to detect polarization through text analysis. read more

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here