Voting-Based Multi-Agent Reinforcement Learning for Intelligent IoT

2 Jul 2019Yue XuZengde DengMengdi WangWenjun XuAnthony Man-Cho SoShuguang Cui

The recent success of single-agent reinforcement learning (RL) in Internet of things (IoT) systems motivates the study of multi-agent reinforcement learning (MARL), which is more challenging but more useful in large-scale IoT. In this paper, we consider a voting-based MARL problem, in which the agents vote to make group decisions and the goal is to maximize the globally averaged returns... (read more)

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet