VRFP: On-the-fly Video Retrieval using Web Images and Fast Fisher Vector Products

10 Dec 2015Xintong HanBharat SinghVlad I. MorariuLarry S. Davis

VRFP is a real-time video retrieval framework based on short text input queries, which obtains weakly labeled training images from the web after the query is known. The retrieved web images representing the query and each database video are treated as unordered collections of images, and each collection is represented using a single Fisher Vector built on CNN features... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet