$μ$VulDeePecker: A Deep Learning-Based System for Multiclass Vulnerability Detection

8 Jan 2020  ·  Deqing Zou, Sujuan Wang, Shouhuai Xu, Zhen Li, Hai Jin ·

Fine-grained software vulnerability detection is an important and challenging problem. Ideally, a detection system (or detector) not only should be able to detect whether or not a program contains vulnerabilities, but also should be able to pinpoint the type of a vulnerability in question. Existing vulnerability detection methods based on deep learning can detect the presence of vulnerabilities (i.e., addressing the binary classification or detection problem), but cannot pinpoint types of vulnerabilities (i.e., incapable of addressing multiclass classification). In this paper, we propose the first deep learning-based system for multiclass vulnerability detection, dubbed $\mu$VulDeePecker. The key insight underlying $\mu$VulDeePecker is the concept of code attention, which can capture information that can help pinpoint types of vulnerabilities, even when the samples are small. For this purpose, we create a dataset from scratch and use it to evaluate the effectiveness of $\mu$VulDeePecker. Experimental results show that $\mu$VulDeePecker is effective for multiclass vulnerability detection and that accommodating control-dependence (other than data-dependence) can lead to higher detection capabilities.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here