W-net: Simultaneous segmentation of multi-anatomical retinal structures using a multi-task deep neural network

11 Jun 2020  ·  Hongwei Zhao, Chengtao Peng, Lei Liu, Bin Li ·

Segmentation of multiple anatomical structures is of great importance in medical image analysis. In this study, we proposed a $\mathcal{W}$-net to simultaneously segment both the optic disc (OD) and the exudates in retinal images based on the multi-task learning (MTL) scheme. We introduced a class-balanced loss and a multi-task weighted loss to alleviate the imbalanced problem and to improve the robustness and generalization property of the $\mathcal{W}$-net. We demonstrated the effectiveness of our approach by applying five-fold cross-validation experiments on two public datasets e\_ophtha\_EX and DiaRetDb1. We achieved F1-score of 94.76\% and 95.73\% for OD segmentation, and 92.80\% and 94.14\% for exudates segmentation. To further prove the generalization property of the proposed method, we applied the trained model on the DRIONS-DB dataset for OD segmentation and on the MESSIDOR dataset for exudate segmentation. Our results demonstrated that by choosing the optimal weights of each task, the MTL based $\mathcal{W}$-net outperformed separate models trained individually on each task. Code and pre-trained models will be available at: \url{https://github.com/FundusResearch/MTL_for_OD_and_exudates.git}.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here