Wasserstein Distributionally Robust Optimization and Variation Regularization

17 Dec 2017  ·  Rui Gao, Xi Chen, Anton J. Kleywegt ·

Wasserstein distributionally robust optimization (DRO) has recently achieved empirical success for various applications in operations research and machine learning, owing partly to its regularization effect. Although connection between Wasserstein DRO and regularization has been established in several settings, existing results often require restrictive assumptions, such as smoothness or convexity, that are not satisfied for many problems. In this paper, we develop a general theory on the variation regularization effect of the Wasserstein DRO - a new form of regularization that generalizes total-variation regularization, Lipschitz regularization and gradient regularization. Our results cover possibly non-convex and non-smooth losses and losses on non-Euclidean spaces. Examples include multi-item newsvendor, portfolio selection, linear prediction, neural networks, manifold learning, and intensity estimation for Poisson processes, etc. As an application of our theory of variation regularization, we derive new generalization guarantees for adversarial robust learning.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here