Wavelength-aware 2D Convolutions for Hyperspectral Imaging

5 Sep 2022  ·  Leon Amadeus Varga, Martin Messmer, Nuri Benbarka, Andreas Zell ·

Deep Learning could drastically boost the classification accuracy for Hyperspectral Imaging (HSI). Still, the training on the mostly small hyperspectral data sets is not trivial. Two key challenges are the large channel dimension of the recordings and the incompatibility between cameras of different manufacturers. By introducing a suitable model bias and continuously defining the channel dimension, we propose a 2D convolution optimized for these challenges of Hyperspectral Imaging. We evaluate the method based on two different hyperspectral applications (inline inspection and remote sensing). Besides the shown superiority of the model, the modification adds additional explanatory power. In addition, the model learns the necessary camera filters in a data-driven manner. Based on these camera filters, an optimal camera can be designed.

PDF Abstract
Task Dataset Model Metric Name Metric Value Global Rank Result Benchmark
Hyperspectral Image-Based Fruit Ripeness Prediction DeepHS Fruit v2 DeepHS-Net+HyveConv Overall Classification Accuracy 57.57 % # 3

Methods