WDC Products: A Multi-Dimensional Entity Matching Benchmark

23 Jan 2023  ·  Ralph Peeters, Reng Chiz Der, Christian Bizer ·

The difficulty of an entity matching task depends on a combination of multiple factors such as the amount of corner-case pairs, the fraction of entities in the test set that have not been seen during training, and the size of the development set. Current entity matching benchmarks usually represent single points in the space along such dimensions or they provide for the evaluation of matching methods along a single dimension, for instance the amount of training data. This paper presents WDC Products, an entity matching benchmark which provides for the systematic evaluation of matching systems along combinations of three dimensions while relying on real-word data. The three dimensions are (i) amount of corner-cases (ii) generalization to unseen entities, and (iii) development set size. Generalization to unseen entities is a dimension not covered by any of the existing benchmarks yet but is crucial for evaluating the robustness of entity matching systems. WDC Products is based on heterogeneous product data from thousands of e-shops which mark-up products offers using schema.org annotations. Instead of learning how to match entity pairs, entity matching can also be formulated as a multi-class classification task that requires the matcher to recognize individual entities. WDC Products is the first benchmark that provides a pair-wise and a multi-class formulation of the same tasks and thus allows to directly compare the two alternatives. We evaluate WDC Products using several state-of-the-art matching systems, including Ditto, HierGAT, and R-SupCon. The evaluation shows that all matching systems struggle with unseen entities to varying degrees. It also shows that some systems are more training data efficient than others.

PDF Abstract

Datasets


Introduced in the Paper:

WDC Products
Task Dataset Model Metric Name Metric Value Global Rank Result Benchmark
Entity Resolution WDC Products-50%cc-unseen-medium Ditto F1 (%) 0.7066 # 2
Entity Resolution WDC Products-50%cc-unseen-medium RoBERTa-base F1 (%) 0.7114 # 1
Entity Resolution WDC Products-50%cc-unseen-medium RoBERTa-SupCon F1 (%) 0.5723 # 4
Entity Resolution WDC Products-50%cc-unseen-medium HG F1 (%) 0.6874 # 3
Entity Resolution WDC Products-80%cc-seen-medium RoBERTa-base F1 (%) 0.7218 # 3
Entity Resolution WDC Products-80%cc-seen-medium HG F1 (%) 0.714 # 4
Entity Resolution WDC Products-80%cc-seen-medium Ditto F1 (%) 0.7393 # 2
Entity Resolution WDC Products-80%cc-seen-medium RoBERTa-SupCon F1 (%) 0.7999 # 1
Entity Resolution WDC Products-80%cc-seen-medium-multi RoBERTa-base F1 Micro 52.03 # 2
Entity Resolution WDC Products-80%cc-seen-medium-multi RoBERTa-SupCon F1 Micro 88.63 # 1

Methods


No methods listed for this paper. Add relevant methods here