We Are Not Your Real Parents: Telling Causal from Confounded using MDL

21 Jan 2019  ·  David Kaltenpoth, Jilles Vreeken ·

Given data over variables $(X_1,...,X_m, Y)$ we consider the problem of finding out whether $X$ jointly causes $Y$ or whether they are all confounded by an unobserved latent variable $Z$. To do so, we take an information-theoretic approach based on Kolmogorov complexity. In a nutshell, we follow the postulate that first encoding the true cause, and then the effects given that cause, results in a shorter description than any other encoding of the observed variables. The ideal score is not computable, and hence we have to approximate it. We propose to do so using the Minimum Description Length (MDL) principle. We compare the MDL scores under the models where $X$ causes $Y$ and where there exists a latent variables $Z$ confounding both $X$ and $Y$ and show our scores are consistent. To find potential confounders we propose using latent factor modeling, in particular, probabilistic PCA (PPCA). Empirical evaluation on both synthetic and real-world data shows that our method, CoCa, performs very well -- even when the true generating process of the data is far from the assumptions made by the models we use. Moreover, it is robust as its accuracy goes hand in hand with its confidence.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods