Weakly-supervised 3D Hand Pose Estimation from Monocular RGB Images

ECCV 2018 Yujun CaiLiuhao GeJianfei CaiJunsong Yuan

Compared with depth-based 3D hand pose estimation, it is more challenging to infer 3D hand pose from monocular RGB images, due to substantial depth ambiguity and the difficulty of obtaining fully-annotated training data. Different from existing learning-based monocular RGB-input approaches that require accurate 3D annotations for training, we propose to leverage the depth images that can be easily obtained from commodity RGB-D cameras during training, while during testing we take only RGB inputs for 3D joint predictions... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.