Classification of Multiple Diseases on Body CT Scans using Weakly Supervised Deep Learning

Purpose: To design multi-disease classifiers for body CT scans for three different organ systems using automatically extracted labels from radiology text reports.Materials & Methods: This retrospective study included a total of 12,092 patients (mean age 57 +- 18; 6,172 women) for model development and testing (from 2012-2017). Rule-based algorithms were used to extract 19,225 disease labels from 13,667 body CT scans from 12,092 patients. Using a three-dimensional DenseVNet, three organ systems were segmented: lungs and pleura; liver and gallbladder; and kidneys and ureters. For each organ, a three-dimensional convolutional neural network classified no apparent disease versus four common diseases for a total of 15 different labels across all three models. Testing was performed on a subset of 2,158 CT volumes relative to 2,875 manually derived reference labels from 2133 patients (mean age 58 +- 18;1079 women). Performance was reported as receiver operating characteristic area under the curve (AUC) with 95% confidence intervals by the DeLong method. Results: Manual validation of the extracted labels confirmed 91% to 99% accuracy across the 15 different labels. AUCs for lungs and pleura labels were: atelectasis 0.77 (95% CI: 0.74, 0.81), nodule 0.65 (0.61, 0.69), emphysema 0.89 (0.86, 0.92), effusion 0.97 (0.96, 0.98), and no apparent disease 0.89 (0.87, 0.91). AUCs for liver and gallbladder were: hepatobiliary calcification 0.62 (95% CI: 0.56, 0.67), lesion 0.73 (0.69, 0.77), dilation 0.87 (0.84, 0.90), fatty 0.89 (0.86, 0.92), and no apparent disease 0.82 (0.78, 0.85). AUCs for kidneys and ureters were: stone 0.83 (95% CI: 0.79, 0.87), atrophy 0.92 (0.89, 0.94), lesion 0.68 (0.64, 0.72), cyst 0.70 (0.66, 0.73), and no apparent disease 0.79 (0.75, 0.83). Conclusion: Weakly-supervised deep learning models were able to classify diverse diseases in multiple organ systems.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here