Weakly Supervised Semantic Segmentation Based on Web Image Co-segmentation

25 May 2017 Tong Shen Guosheng Lin Lingqiao Liu Chunhua Shen Ian Reid

Training a Fully Convolutional Network (FCN) for semantic segmentation requires a large number of masks with pixel level labelling, which involves a large amount of human labour and time for annotation. In contrast, web images and their image-level labels are much easier and cheaper to obtain... (read more)

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet