Weyl remainders: an application of geodesic beams

8 Oct 2020  ·  Yaiza Canzani, Jeffrey Galkowski ·

We obtain new quantitative estimates on Weyl Law remainders under dynamical assumptions on the geodesic flow. On a smooth compact Riemannian manifold $(M,g)$ of dimension $n$, let $\Pi_\lambda$ denote the kernel of the spectral projector for the Laplacian, $\mathbb{1}_{[0,\lambda^2]}(-\Delta_g)$. Assuming only that the set of near periodic geodesics over $W\subset M$ has small measure, we prove that as $\lambda \to \infty$ $$ \int_{W} \Pi_\lambda(x,x)dx=(2\pi)^{-n}\text{vol}_{\mathbb{R}^n}(B)\text{vol}_g(W)\,\lambda^n+O\Big(\frac{\lambda^{n-1}}{\log \lambda }\Big),$$ where $B$ is the unit ball. One consequence of this result is that the improved remainder holds on all product manifolds, in particular giving improved estimates for the eigenvalue counting function in the product setup. Our results also include logarithmic gains on asymptotics for the off-diagonal spectral projector $\Pi_\lambda(x,y)$ under the assumption that the set of geodesics that pass near both $x$ and $y$ has small measure, and quantitative improvements for Kuznecov sums under non-looping type assumptions. The key technique used in our study of the spectral projector is that of geodesic beams.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Analysis of PDEs Spectral Theory