What Are People Asking About COVID-19? A Question Classification Dataset

We present COVID-Q, a set of 1,690 questions about COVID-19 from 13 sources, which we annotate into 15 question categories and 207 question clusters. The most common questions in our dataset asked about transmission, prevention, and societal effects of COVID, and we found that many questions that appeared in multiple sources were not answered by any FAQ websites of reputable organizations such as the CDC and FDA. We post our dataset publicly at https://github.com/JerryWei03/COVID-Q. For classifying questions into 15 categories, a BERT baseline scored 58.1% accuracy when trained on 20 examples per category, and for a question clustering task, a BERT + triplet loss baseline achieved 49.5% accuracy. We hope COVID-Q can help either for direct use in developing applied systems or as a domain-specific resource for model evaluation.

PDF Abstract ACL 2020 PDF ACL 2020 Abstract

Datasets


Introduced in the Paper:

COVID-Q

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods