What are We Depressed about When We Talk about COVID19: Mental Health Analysis on Tweets Using Natural Language Processing

The outbreak of coronavirus disease 2019 (COVID-19) recently has affected human life to a great extent. Besides direct physical and economic threats, the pandemic also indirectly impact people's mental health conditions, which can be overwhelming but difficult to measure. The problem may come from various reasons such as unemployment status, stay-at-home policy, fear for the virus, and so forth. In this work, we focus on applying natural language processing (NLP) techniques to analyze tweets in terms of mental health. We trained deep models that classify each tweet into the following emotions: anger, anticipation, disgust, fear, joy, sadness, surprise and trust. We build the EmoCT (Emotion-Covid19-Tweet) dataset for the training purpose by manually labeling 1,000 English tweets. Furthermore, we propose and compare two methods to find out the reasons that are causing sadness and fear.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here