What Machine Learning Tells Us About the Mathematical Structure of Concepts

28 Aug 2024  ·  Jun Otsuka ·

This paper examines the connections among various approaches to understanding concepts in philosophy, cognitive science, and machine learning, with a particular focus on their mathematical nature. By categorizing these approaches into Abstractionism, the Similarity Approach, the Functional Approach, and the Invariance Approach, the study highlights how each framework provides a distinct mathematical perspective for modeling concepts. The synthesis of these approaches bridges philosophical theories and contemporary machine learning models, providing a comprehensive framework for future research. This work emphasizes the importance of interdisciplinary dialogue, aiming to enrich our understanding of the complex relationship between human cognition and artificial intelligence.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods