What Makes for Hierarchical Vision Transformer?

5 Jul 2021  ·  Yuxin Fang, Xinggang Wang, Rui Wu, Wenyu Liu ·

Recent studies indicate that hierarchical Vision Transformer with a macro architecture of interleaved non-overlapped window-based self-attention \& shifted-window operation is able to achieve state-of-the-art performance in various visual recognition tasks, and challenges the ubiquitous convolutional neural networks (CNNs) using densely slid kernels. Most follow-up works attempt to replace the shifted-window operation with other kinds of cross-window communication paradigms, while treating self-attention as the de-facto standard for window-based information aggregation. In this manuscript, we question whether self-attention is the only choice for hierarchical Vision Transformer to attain strong performance, and the effects of different kinds of cross-window communication. To this end, we replace self-attention layers with embarrassingly simple linear mapping layers, and the resulting proof-of-concept architecture termed as LinMapper can achieve very strong performance in ImageNet-1k image recognition. Moreover, we find that LinMapper is able to better leverage the pre-trained representations from image recognition and demonstrates excellent transfer learning properties on downstream dense prediction tasks such as object detection and instance segmentation. We also experiment with other alternatives to self-attention for content aggregation inside each non-overlapped window under different cross-window communication approaches, which all give similar competitive results. Our study reveals that the \textbf{macro architecture} of Swin model families, other than specific aggregation layers or specific means of cross-window communication, may be more responsible for its strong performance and is the real challenger to the ubiquitous CNN's dense sliding window paradigm. Code and models will be publicly available to facilitate future research.

PDF Abstract


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.