What makes Models Compositional? A Theoretical View: With Supplement

2 May 2024  ·  Parikshit Ram, Tim Klinger, Alexander G. Gray ·

Compositionality is thought to be a key component of language, and various compositional benchmarks have been developed to empirically probe the compositional generalization of existing sequence processing models. These benchmarks often highlight failures of existing models, but it is not clear why these models fail in this way. In this paper, we seek to theoretically understand the role the compositional structure of the models plays in these failures and how this structure relates to their expressivity and sample complexity. We propose a general neuro-symbolic definition of compositional functions and their compositional complexity. We then show how various existing general and special purpose sequence processing models (such as recurrent, convolution and attention-based ones) fit this definition and use it to analyze their compositional complexity. Finally, we provide theoretical guarantees for the expressivity and systematic generalization of compositional models that explicitly depend on our proposed definition and highlighting factors which drive poor empirical performance.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.