What Vision-Language Models `See' when they See Scenes

15 Sep 2021  ·  Michele Cafagna, Kees Van Deemter, Albert Gatt ·

Images can be described in terms of the objects they contain, or in terms of the types of scene or place that they instantiate. In this paper we address to what extent pretrained Vision and Language models can learn to align descriptions of both types with images. We compare 3 state-of-the-art models, VisualBERT, LXMERT and CLIP. We find that (i) V&L models are susceptible to stylistic biases acquired during pretraining; (ii) only CLIP performs consistently well on both object- and scene-level descriptions. A follow-up ablation study shows that CLIP uses object-level information in the visual modality to align with scene-level textual descriptions.

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.