What Would a Teacher Do? Predicting Future Talk Moves

Recent advances in natural language processing (NLP) have the ability to transform how classroom learning takes place. Combined with the increasing integration of technology in today's classrooms, NLP systems leveraging question answering and dialog processing techniques can serve as private tutors or participants in classroom discussions to increase student engagement and learning. To progress towards this goal, we use the classroom discourse framework of academically productive talk (APT) to learn strategies that make for the best learning experience. In this paper, we introduce a new task, called future talk move prediction (FTMP): it consists of predicting the next talk move -- an utterance strategy from APT -- given a conversation history with its corresponding talk moves. We further introduce a neural network model for this task, which outperforms multiple baselines by a large margin. Finally, we compare our model's performance on FTMP to human performance and show several similarities between the two.

PDF Abstract Findings (ACL) 2021 PDF Findings (ACL) 2021 Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here