When are Non-Parametric Methods Robust?

ICML 2020  ·  Robi Bhattacharjee, Kamalika Chaudhuri ·

A growing body of research has shown that many classifiers are susceptible to {\em{adversarial examples}} -- small strategic modifications to test inputs that lead to misclassification. In this work, we study general non-parametric methods, with a view towards understanding when they are robust to these modifications. We establish general conditions under which non-parametric methods are r-consistent -- in the sense that they converge to optimally robust and accurate classifiers in the large sample limit. Concretely, our results show that when data is well-separated, nearest neighbors and kernel classifiers are r-consistent, while histograms are not. For general data distributions, we prove that preprocessing by Adversarial Pruning (Yang et. al., 2019) -- that makes data well-separated -- followed by nearest neighbors or kernel classifiers also leads to r-consistency.

PDF Abstract ICML 2020 PDF
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods