When are Non-Parametric Methods Robust?

ICML 2020 Robi BhattacharjeeKamalika Chaudhuri

A growing body of research has shown that many classifiers are susceptible to {\em{adversarial examples}} -- small strategic modifications to test inputs that lead to misclassification. In this work, we study general non-parametric methods, with a view towards understanding when they are robust to these modifications... (read more)

PDF Abstract ICML 2020 PDF


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet