When is Particle Filtering Efficient for Planning in Partially Observed Linear Dynamical Systems?

10 Jun 2020  ·  Simon S. Du, Wei Hu, Zhiyuan Li, Ruoqi Shen, Zhao Song, Jiajun Wu ·

Particle filtering is a popular method for inferring latent states in stochastic dynamical systems, whose theoretical properties have been well studied in machine learning and statistics communities. In many control problems, e.g., partially observed linear dynamical systems (POLDS), oftentimes the inferred latent state is further used for planning at each step. This paper initiates a rigorous study on the efficiency of particle filtering for sequential planning, and gives the first particle complexity bounds. Though errors in past actions may affect the future, we are able to bound the number of particles needed so that the long-run reward of the policy based on particle filtering is close to that based on exact inference. In particular, we show that, in stable systems, polynomially many particles suffice. Key in our proof is a coupling of the ideal sequence based on the exact planning and the sequence generated by approximate planning based on particle filtering. We believe this technique can be useful in other sequential decision-making problems.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here