When Locally Linear Embedding Hits Boundary

11 Nov 2018Hau-tieng WuNan Wu

Based on the Riemannian manifold model, we study the asymptotical behavior of a widely applied unsupervised learning algorithm, locally linear embedding (LLE), when the point cloud is sampled from a compact, smooth manifold with boundary. We show several peculiar behaviors of LLE near the boundary that are different from those diffusion based algorithms... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.