Which Heroes to Pick? Learning to Draft in MOBA Games with Neural Networks and Tree Search

18 Dec 2020  ·  Sheng Chen, Menghui Zhu, Deheng Ye, Weinan Zhang, Qiang Fu, Wei Yang ·

Hero drafting is essential in MOBA game playing as it builds the team of each side and directly affects the match outcome. State-of-the-art drafting methods fail to consider: 1) drafting efficiency when the hero pool is expanded; 2) the multi-round nature of a MOBA 5v5 match series, i.e., two teams play best-of-N and the same hero is only allowed to be drafted once throughout the series. In this paper, we formulate the drafting process as a multi-round combinatorial game and propose a novel drafting algorithm based on neural networks and Monte-Carlo tree search, named JueWuDraft. Specifically, we design a long-term value estimation mechanism to handle the best-of-N drafting case. Taking Honor of Kings, one of the most popular MOBA games at present, as a running case, we demonstrate the practicality and effectiveness of JueWuDraft when compared to state-of-the-art drafting methods.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here