Paper

Which Surrogate Works for Empirical Performance Modelling? A Case Study with Differential Evolution

It is not uncommon that meta-heuristic algorithms contain some intrinsic parameters, the optimal configuration of which is crucial for achieving their peak performance. However, evaluating the effectiveness of a configuration is expensive, as it involves many costly runs of the target algorithm. Perhaps surprisingly, it is possible to build a cheap-to-evaluate surrogate that models the algorithm's empirical performance as a function of its parameters. Such surrogates constitute an important building block for understanding algorithm performance, algorithm portfolio/selection, and the automatic algorithm configuration. In principle, many off-the-shelf machine learning techniques can be used to build surrogates. In this paper, we take the differential evolution (DE) as the baseline algorithm for proof-of-concept study. Regression models are trained to model the DE's empirical performance given a parameter configuration. In particular, we evaluate and compare four popular regression algorithms both in terms of how well they predict the empirical performance with respect to a particular parameter configuration, and also how well they approximate the parameter versus the empirical performance landscapes.

Results in Papers With Code
(↓ scroll down to see all results)