White matter fiber analysis using kernel dictionary learning and sparsity priors

15 Apr 2018  ·  Kuldeep Kumar, Kaleem Siddiqi, Christian Desrosiers ·

Diffusion magnetic resonance imaging, a non-invasive tool to infer white matter fiber connections, produces a large number of streamlines containing a wealth of information on structural connectivity. The size of these tractography outputs makes further analyses complex, creating a need for methods to group streamlines into meaningful bundles. In this work, we address this by proposing a set of kernel dictionary learning and sparsity priors based methods. Proposed frameworks include L-0 norm, group sparsity, as well as manifold regularization prior. The proposed methods allow streamlines to be assigned to more than one bundle, making it more robust to overlapping bundles and inter-subject variations. We evaluate the performance of our method on a labeled set and data from Human Connectome Project. Results highlight the ability of our method to group streamlines into plausible bundles and illustrate the impact of sparsity priors on the performance of the proposed methods.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here