Whittle index based Q-learning for restless bandits with average reward

29 Apr 2020Konstantin AvrachenkovVivek S. Borkar

A novel reinforcement learning algorithm is introduced for multiarmed restless bandits with average reward, using the paradigms of Q-learning and Whittle index. Specifically, we leverage the structure of the Whittle index policy to reduce the search space of Q-learning, resulting in major computational gains... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.