A Bayesian Approach to In-Game Win Probability in Soccer

12 Jun 2019  ·  Pieter Robberechts, Jan Van Haaren, Jesse Davis ·

In-game win probability models, which provide a sports team's likelihood of winning at each point in a game based on historical observations, are becoming increasingly popular. In baseball, basketball and American football, they have become important tools to enhance fan experience, to evaluate in-game decision-making, and to inform coaching decisions. While equally relevant in soccer, the adoption of these models is held back by technical challenges arising from the low-scoring nature of the sport. In this paper, we introduce an in-game win probability model for soccer that addresses the shortcomings of existing models. First, we demonstrate that in-game win probability models for other sports struggle to provide accurate estimates for soccer, especially towards the end of a game. Second, we introduce a novel Bayesian statistical framework that estimates running win, tie and loss probabilities by leveraging a set of contextual game state features. An empirical evaluation on eight seasons of data for the top-five soccer leagues demonstrates that our framework provides well-calibrated probabilities. Furthermore, two use cases show its ability to enhance fan experience and to evaluate performance in crucial game situations.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here