Why Do Deep Residual Networks Generalize Better than Deep Feedforward Networks? -- A Neural Tangent Kernel Perspective

14 Feb 2020  ·  Kaixuan Huang, Yuqing Wang, Molei Tao, Tuo Zhao ·

Deep residual networks (ResNets) have demonstrated better generalization performance than deep feedforward networks (FFNets). However, the theory behind such a phenomenon is still largely unknown. This paper studies this fundamental problem in deep learning from a so-called "neural tangent kernel" perspective. Specifically, we first show that under proper conditions, as the width goes to infinity, training deep ResNets can be viewed as learning reproducing kernel functions with some kernel function. We then compare the kernel of deep ResNets with that of deep FFNets and discover that the class of functions induced by the kernel of FFNets is asymptotically not learnable, as the depth goes to infinity. In contrast, the class of functions induced by the kernel of ResNets does not exhibit such degeneracy. Our discovery partially justifies the advantages of deep ResNets over deep FFNets in generalization abilities. Numerical results are provided to support our claim.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here