WIKIBIAS: Detecting Multi-Span Subjective Biases in Language

Biases continue to be prevalent in modern text and media, especially subjective bias – a special type of bias that introduces improper attitudes or presents a statement with the presupposition of truth. To tackle the problem of detecting and further mitigating subjective bias, we introduce a manually annotated parallel corpus WIKIBIAS with more than 4,000 sentence pairs from Wikipedia edits. This corpus contains annotations towards both sentence-level bias types and token-level biased segments. We present systematic analyses of our dataset and results achieved by a set of state-of-the-art baselines in terms of three tasks: bias classification, tagging biased segments, and neutralizing biased text. We find that current models still struggle with detecting multi-span biases despite their reasonable performances, suggesting that our dataset can serve as a useful research benchmark. We also demonstrate that models trained on our dataset can generalize well to multiple domains such as news and political speeches.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here