Win Prediction in Esports: Mixed-Rank Match Prediction in Multi-player Online Battle Arena Games

17 Nov 2017  ·  Victoria Hodge, Sam Devlin, Nick Sephton, Florian Block, Anders Drachen, Peter Cowling ·

Esports has emerged as a popular genre for players as well as spectators, supporting a global entertainment industry. Esports analytics has evolved to address the requirement for data-driven feedback, and is focused on cyber-athlete evaluation, strategy and prediction. Towards the latter, previous work has used match data from a variety of player ranks from hobbyist to professional players. However, professional players have been shown to behave differently than lower ranked players. Given the comparatively limited supply of professional data, a key question is thus whether mixed-rank match datasets can be used to create data-driven models which predict winners in professional matches and provide a simple in-game statistic for viewers and broadcasters. Here we show that, although there is a slightly reduced accuracy, mixed-rank datasets can be used to predict the outcome of professional matches, with suitably optimized configurations.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here