Wireless Federated Learning (WFL) for 6G Networks -- Part I: Research Challenges and Future Trends

24 Apr 2021  ·  Pavlos S. Bouzinis, Panagiotis D. Diamantoulakis, George K. Karagiannidis ·

Conventional machine learning techniques are conducted in a centralized manner. Recently, the massive volume of generated wireless data, the privacy concerns and the increasing computing capabilities of wireless end-devices have led to the emergence of a promising decentralized solution, termed as Wireless Federated Learning (WFL). In this first of the two parts paper, we present the application of WFL in the sixth generation of wireless networks (6G), which is envisioned to be an integrated communication and computing platform. After analyzing the key concepts of WFL, we discuss the core challenges of WFL imposed by the wireless (or mobile communication) environment. Finally, we shed light to the future directions of WFL, aiming to compose a constructive integration of FL into the future wireless networks.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here