WOR and $p$'s: Sketches for $\ell_p$-Sampling Without Replacement

Weighted sampling is a fundamental tool in data analysis and machine learning pipelines. Samples are used for efficient estimation of statistics or as sparse representations of the data... When weight distributions are skewed, as is often the case in practice, without-replacement (WOR) sampling is much more effective than with-replacement (WR) sampling: it provides a broader representation and higher accuracy for the same number of samples. We design novel composable sketches for WOR $\ell_p$ sampling, weighted sampling of keys according to a power $p\in[0,2]$ of their frequency (or for signed data, sum of updates). Our sketches have size that grows only linearly with the sample size. Our design is simple and practical, despite intricate analysis, and based on off-the-shelf use of widely implemented heavy hitters sketches such as CountSketch. Our method is the first to provide WOR sampling in the important regime of $p>1$ and the first to handle signed updates for $p>0$. read more

PDF Abstract NeurIPS 2020 PDF NeurIPS 2020 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here