WrapperFL: A Model Agnostic Plug-in for Industrial Federated Learning

21 Jun 2022  ·  Xueyang Wu, Shengqi Tan, Qian Xu, Qiang Yang ·

Federated learning, as a privacy-preserving collaborative machine learning paradigm, has been gaining more and more attention in the industry. With the huge rise in demand, there have been many federated learning platforms that allow federated participants to set up and build a federated model from scratch. However, exiting platforms are highly intrusive, complicated, and hard to integrate with built machine learning models. For many real-world businesses that already have mature serving models, existing federated learning platforms have high entry barriers and development costs. This paper presents a simple yet practical federated learning plug-in inspired by ensemble learning, dubbed WrapperFL, allowing participants to build/join a federated system with existing models at minimal costs. The WrapperFL works in a plug-and-play way by simply attaching to the input and output interfaces of an existing model, without the need of re-development, significantly reducing the overhead of manpower and resources. We verify our proposed method on diverse tasks under heterogeneous data distributions and heterogeneous models. The experimental results demonstrate that WrapperFL can be successfully applied to a wide range of applications under practical settings and improves the local model with federated learning at a low cost.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here