WSFE: Wasserstein Sub-graph Feature Encoder for Effective User Segmentation in Collaborative Filtering

8 May 2023  ·  Yankai Chen, Yifei Zhang, Menglin Yang, Zixing Song, Chen Ma, Irwin King ·

Maximizing the user-item engagement based on vectorized embeddings is a standard procedure of recent recommender models. Despite the superior performance for item recommendations, these methods however implicitly deprioritize the modeling of user-wise similarity in the embedding space; consequently, identifying similar users is underperforming, and additional processing schemes are usually required otherwise. To avoid thorough model re-training, we propose WSFE, a model-agnostic and training-free representation encoder, to be flexibly employed on the fly for effective user segmentation. Underpinned by the optimal transport theory, the encoded representations from WSFE present a matched user-wise similarity/distance measurement between the realistic and embedding space. We incorporate WSFE into six state-of-the-art recommender models and conduct extensive experiments on six real-world datasets. The empirical analyses well demonstrate the superiority and generality of WSFE to fuel multiple downstream tasks with diverse underlying targets in recommendation.

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here