yiriyou@SMM4H’22: Stance and Premise Classification in Domain Specific Tweets with Dual-View Attention Neural Networks

The paper introduces the methodology proposed for the shared Task 2 of the Social Media Mining for Health Application (SMM4H) in 2022. Task 2 consists of two subtasks: Stance Detection and Premise Classification, named Subtask 2a and Subtask 2b, respectively. Our proposed system is based on dual-view attention neural networks and achieves an F1 score of 0.618 for Subtask 2a (0.068 more than the median) and an F1 score of 0.630 for Subtask 2b (0.017 less than the median). Further experiments show that the domain-specific pre-trained model, cross-validation, and pseudo-label techniques contribute to the improvement of system performance.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here