You Don’t Know My Favorite Color: Preventing Dialogue Representations from Revealing Speakers’ Private Personas

NAACL 2022  ·  Haoran Li, Yangqiu Song, Lixin Fan ·

Social chatbots, also known as chit-chat chatbots, evolve rapidly with large pretrained language models. Despite the huge progress, privacy concerns have arisen recently: training data of large language models can be extracted via model inversion attacks. On the other hand, the datasets used for training chatbots contain many private conversations between two individuals. In this work, we further investigate the privacy leakage of the hidden states of chatbots trained by language modeling which has not been well studied yet. We show that speakers’ personas can be inferred through a simple neural network with high accuracy. To this end, we propose effective defense objectives to protect persona leakage from hidden states. We conduct extensive experiments to demonstrate that our proposed defense objectives can greatly reduce the attack accuracy from 37.6% to 0.5%. Meanwhile, the proposed objectives preserve language models’ powerful generation ability.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here