YoungSheldon at SemEval-2021 Task 5: Fine-tuning Pre-trained Language Models for Toxic Spans Detection using Token classification Objective

In this paper, we describe our system used for SemEval 2021 Task 5: Toxic Spans Detection. Our proposed system approaches the problem as a token classification task. We trained our model to find toxic words and concatenate their spans to predict the toxic spans within a sentence. We fine-tuned Pre-trained Language Models (PLMs) for identifying the toxic words. For fine-tuning, we stacked the classification layer on top of the PLM features of each word to classify if it is toxic or not. PLMs are pre-trained using different objectives and their performance may differ on downstream tasks. We, therefore, compare the performance of BERT, ELECTRA, RoBERTa, XLM-RoBERTa, T5, XLNet, and MPNet for identifying toxic spans within a sentence. Our best performing system used RoBERTa. It performed well, achieving an F1 score of 0.6841 and secured a rank of 16 on the official leaderboard.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.