Zap Q-Learning for Optimal Stopping Time Problems

25 Apr 2019  ·  Shuhang Chen, Adithya M. Devraj, Ana Bušić, Sean P. Meyn ·

The objective in this paper is to obtain fast converging reinforcement learning algorithms to approximate solutions to the problem of discounted cost optimal stopping in an irreducible, uniformly ergodic Markov chain, evolving on a compact subset of $\mathbb{R}^n$. We build on the dynamic programming approach taken by Tsitsikilis and Van Roy, wherein they propose a Q-learning algorithm to estimate the optimal state-action value function, which then defines an optimal stopping rule. We provide insights as to why the convergence rate of this algorithm can be slow, and propose a fast-converging alternative, the "Zap-Q-learning" algorithm, designed to achieve optimal rate of convergence. For the first time, we prove the convergence of the Zap-Q-learning algorithm under the assumption of linear function approximation setting. We use ODE analysis for the proof, and the optimal asymptotic variance property of the algorithm is reflected via fast convergence in a finance example.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.