Zero-Shot Classification With Discriminative Semantic Representation Learning

CVPR 2017  ·  Meng Ye, Yuhong Guo ·

Zero-shot learning, a special case of unsupervised domain adaptation where the source and target domains have disjoint label spaces, has become increasingly popular in the computer vision community. In this paper, we propose a novel zero-shot learning method based on discriminative sparse non-negative matrix factorization. The proposed approach aims to identify a set of common high-level semantic components across the two domains via non-negative sparse matrix factorization, while enforcing the representation vectors of the images in this common component-based space to be discriminatively aligned with the attribute-based label representation vectors. To fully exploit the aligned semantic information contained in the learned representation vectors of the instances, we develop a label propagation based testing procedure to classify the unlabeled instances from the unseen classes in the target domain. We conduct experiments on four standard zero-shot learning image datasets, by comparing the proposed approach to the state-of-the-art zero-shot learning methods. The empirical results demonstrate the efficacy of the proposed approach.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here