Zero-shot Synthesis with Group-Supervised Learning

ICLR 2021  ·  Yunhao Ge, Sami Abu-El-Haija, Gan Xin, Laurent Itti ·

Visual cognition of primates is superior to that of artificial neural networks in its ability to 'envision' a visual object, even a newly-introduced one, in different attributes including pose, position, color, texture, etc. To aid neural networks to envision objects with different attributes, we propose a family of objective functions, expressed on groups of examples, as a novel learning framework that we term Group-Supervised Learning (GSL)... GSL allows us to decompose inputs into a disentangled representation with swappable components, that can be recombined to synthesize new samples. For instance, images of red boats & blue cars can be decomposed and recombined to synthesize novel images of red cars. We propose an implementation based on auto-encoder, termed group-supervised zero-shot synthesis network (GZS-Net) trained with our learning framework, that can produce a high-quality red car even if no such example is witnessed during training. We test our model and learning framework on existing benchmarks, in addition to anew dataset that we open-source. We qualitatively and quantitatively demonstrate that GZS-Net trained with GSL outperforms state-of-the-art methods. read more

PDF Abstract ICLR 2021 PDF ICLR 2021 Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here