Zero-Shot Task Transfer

CVPR 2019  ·  Arghya Pal, Vineeth N. Balasubramanian ·

In this work, we present a novel meta-learning algorithm, i.e. TTNet, that regresses model parameters for novel tasks for which no ground truth is available (zero-shot tasks). In order to adapt to novel zero-shot tasks, our meta-learner learns from the model parameters of known tasks (with ground truth) and the correlation of known tasks to zero-shot tasks. Such intuition finds its foothold in cognitive science, where a subject (human baby) can adapt to a novel-concept (depth understanding) by correlating it with old concepts (hand movement or self-motion), without receiving explicit supervision. We evaluated our model on the Taskonomy dataset, with four tasks as zero-shot: surface-normal, room layout, depth, and camera pose estimation. These tasks were chosen based on the data acquisition complexity and the complexity associated with the learning process using a deep network. Our proposed methodology out-performs state-of-the-art models (which use ground truth)on each of our zero-shot tasks, showing promise on zero-shot task transfer. We also conducted extensive experiments to study the various choices of our methodology, as well as showed how the proposed method can also be used in transfer learning. To the best of our knowledge, this is the firstsuch effort on zero-shot learning in the task space.

PDF Abstract CVPR 2019 PDF CVPR 2019 Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here