Zeroth-Order Online Alternating Direction Method of Multipliers: Convergence Analysis and Applications

21 Oct 2017  ·  Sijia Liu, Jie Chen, Pin-Yu Chen, Alfred O. Hero ·

In this paper, we design and analyze a new zeroth-order online algorithm, namely, the zeroth-order online alternating direction method of multipliers (ZOO-ADMM), which enjoys dual advantages of being gradient-free operation and employing the ADMM to accommodate complex structured regularizers. Compared to the first-order gradient-based online algorithm, we show that ZOO-ADMM requires $\sqrt{m}$ times more iterations, leading to a convergence rate of $O(\sqrt{m}/\sqrt{T})$, where $m$ is the number of optimization variables, and $T$ is the number of iterations. To accelerate ZOO-ADMM, we propose two minibatch strategies: gradient sample averaging and observation averaging, resulting in an improved convergence rate of $O(\sqrt{1+q^{-1}m}/\sqrt{T})$, where $q$ is the minibatch size. In addition to convergence analysis, we also demonstrate ZOO-ADMM to applications in signal processing, statistics, and machine learning.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods