Paper

ZScribbleSeg: Zen and the Art of Scribble Supervised Medical Image Segmentation

Curating a large scale fully-annotated dataset can be both labour-intensive and expertise-demanding, especially for medical images. To alleviate this problem, we propose to utilize solely scribble annotations for weakly supervised segmentation. Existing solutions mainly leverage selective losses computed solely on annotated areas and generate pseudo gold standard segmentation by propagating labels to adjacent areas. However, these methods could suffer from the inaccurate and sometimes unrealistic pseudo segmentation due to the insufficient supervision and incomplete shape features. Different from previous efforts, we first investigate the principle of ''good scribble annotations'', which leads to efficient scribble forms via supervision maximization and randomness simulation. Furthermore, we introduce regularization terms to encode the spatial relationship and shape prior, where a new formulation is developed to estimate the mixture ratios of label classes. These ratios are critical in identifying the unlabeled pixels for each class and correcting erroneous predictions, thus the accurate estimation lays the foundation for the incorporation of spatial prior. Finally, we integrate the efficient scribble supervision with the prior into a unified framework, denoted as ZScribbleSeg, and apply the method to multiple scenarios. Leveraging only scribble annotations, ZScribbleSeg set new state-of-the-arts on four segmentation tasks using ACDC, MSCMRseg, MyoPS and PPSS datasets.

Results in Papers With Code
(↓ scroll down to see all results)